### Return: [INFO] [Console$] Inspecting PredictionIO... [INFO] [Console$] PredictionIO 0.9.6 is installed at ... [INFO] [Console$] Inspecting Apache Spark... [INFO] [Console$] Apache Spark is installed at ... [INFO] [Console$] Apache Spark 1.6.0 detected ... [INFO] [Console$] Inspecting storage backend connections... [INFO] [Storage$] Verifying Meta Data Backend (Source: MYSQL)... [INFO] [Storage$] Verifying Model Data Backend (Source: MYSQL)... [INFO] [Storage$] Verifying Event Data Backend (Source: MYSQL)... [INFO] [Storage$] Test writing to Event Store (App Id 0)... [INFO] [Console$] (sleeping 5 seconds for all messages to show up...) [INFO] [Console$] Your system is all ready to go.
Quick Start
Step 1. Run PredictionIO
先執行 PredictionIO 主程式,針對不同的儲存器,有不同的執行方法。
1 2 3 4 5 6 7
$ pio eventserver & # If you are using PostgreSQL or MySQL, run the following to start PredictionIO Event Server
or
$ pio-start-all # If instead you are running HBase and Elasticsearch, run the following to start all PredictionIO Event Server, HBase, and Elasticsearch
Step 2. Create a new Engine from an Engine Template
... "datasource": { "params" : { "appName": MyRecommendation # make sure the appName parameter match your App Name } }, ...
部署系統到 Web Service 時,過程中分成三個步驟: pio build -> pio train -> pio deploy Building 負責準備 Spark 的基礎環境及資料準備。 Training 負責執行演算法建模。 Deployment 則是將結果運行在 Web Service 上,並以 Restful API 開放。
Bulid and Training the Predictive Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
$ pio build
### Return: [INFO] [Console$] Your engine is ready for training.
$ pio train
### Return: [INFO] [CoreWorkflow$] Training completed successfully.
$ pio deploy
### Return: [INFO] [HttpListener] Bound to /0.0.0.0:8000 [INFO] [MasterActor] Bind successful. Ready to serve.