### Return: [INFO] [Console$] InspectingPredictionIO... [INFO] [Console$] PredictionIO0.9.6 is installed at ... [INFO] [Console$] InspectingApacheSpark... [INFO] [Console$] ApacheSpark is installed at ... [INFO] [Console$] ApacheSpark1.6.0 detected ... [INFO] [Console$] Inspecting storage backend connections... [INFO] [Storage$] VerifyingMetaDataBackend (Source: MYSQL)... [INFO] [Storage$] VerifyingModelDataBackend (Source: MYSQL)... [INFO] [Storage$] VerifyingEventDataBackend (Source: MYSQL)... [INFO] [Storage$] Test writing to EventStore (AppId0)... [INFO] [Console$] (sleeping 5 seconds for all messages to show up...) [INFO] [Console$] Your system is all ready to go.
Quick Start
Step 1. Run PredictionIO
先執行 PredictionIO 主程式,針對不同的儲存器,有不同的執行方法。
1 2 3 4 5 6 7
$ pio eventserver & # If you are using PostgreSQL or MySQL, run the followingtostart PredictionIO Event Server
or
$ pio-start-all # Ifinstead you are running HBase and Elasticsearch, run the followingtostartall PredictionIO Event Server, HBase, and Elasticsearch
Step 2. Create a new Engine from an Engine Template
... "datasource":{ "params":{ "appName": MyRecommendation # make sure the appName parameter match your App Name } }, ...
部署系統到 Web Service 時,過程中分成三個步驟: pio build -> pio train -> pio deploy Building 負責準備 Spark 的基礎環境及資料準備。 Training 負責執行演算法建模。 Deployment 則是將結果運行在 Web Service 上,並以 Restful API 開放。
Bulid and Training the Predictive Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$ pio build
### Return: [INFO] [Console$] Your engine is ready for training.
$ pio train
### Return: [INFO] [CoreWorkflow$] Training completed successfully.
$ pio deploy
### Return: [INFO] [HttpListener] Bound to /0.0.0.0:8000 [INFO] [MasterActor] Bind successful. Ready to serve.